refnx.reflect

class refnx.reflect.Component[source]

Bases: object

A base class for describing the structure of a subset of an interface.

__or__(other)[source]

OR’ing components can create a Structure.

Parameters

other (refnx.reflect.Structure`, refnx.reflect.Component) – Combines with this component to make a Structure

Returns

s – The created Structure

Return type

refnx.reflect.Structure

Examples

>>> air = SLD(0, name='air')
>>> sio2 = SLD(3.47, name='SiO2')
>>> si = SLD(2.07, name='Si')
>>> structure = air | sio2(20, 3) | si(0, 3)
logp()[source]

The log-probability that this Component adds to the total log-prior term. Do not include log-probability terms for the actual parameters, these are automatically included elsewhere.

Returns

logp – Log-probability

Return type

float

property parameters

refnx.analysis.Parameters associated with this component

slabs(structure=None)[source]

The slab representation of this component

Parameters

structure (refnx.reflect.Structure) – The Structure hosting the Component.

Returns

  • slabs (np.ndarray) – Slab representation of this Component. Has shape (N, 5).

    • slab[N, 0]

      thickness of layer N

    • slab[N, 1]

      SLD.real of layer N (not including solvent)

    • slab[N, 2]

      overall SLD.imag of layer N (not including solvent)

    • slab[N, 3]

      roughness between layer N and N-1

    • slab[N, 4]

      volume fraction of solvent in layer N.

  • If a Component returns None, then it doesn’t have any slabs.

class refnx.reflect.LipidLeaflet(apm, b_heads, vm_heads, thickness_heads, b_tails, vm_tails, thickness_tails, rough_head_tail, rough_preceding_mono, head_solvent=None, tail_solvent=None, reverse_monolayer=False, name='')[source]

Bases: refnx.reflect.structure.Component

Describes a lipid leaflet Component at an interface

Parameters
  • APM (float or refnx.analysis.Parameter) –

  • b_heads (float, refnx.analysis.Parameter, complex or SLD) – Sum of coherent scattering lengths of head group (Angstrom). When an SLD is provided it is simply an easy way to provide a complex value. LipidLeaflet.b_heads_real is set to SLD.real, etc.

  • vm_heads (float or refnx.analysis.Parameter) – Molecular volume of head group (Angstrom**2)

  • thickness_heads (float or refnx.analysis.Parameter) – Thickness of head group region (Angstrom)

  • b_tails (float, refnx.analysis.Parameter, complex or SLD) – Sum of coherent scattering lengths of tail group (Angstrom). When an SLD is provided it is simply an easy way to provide a complex value. LipidLeaflet.b_tails_real is set to SLD.real, etc.

  • vm_tails (float or refnx.analysis.Parameter) – Molecular volume of tail group (Angstrom**2)

  • thickness_tails (float or refnx.analysis.Parameter) – Thickness of head group region (Angstrom)

  • rough_head_tail (float or refnx.analysis.Parameter) – Roughness of head-tail group (Angstrom)

  • rough_preceding_mono (float or refnx.analysis.Parameter) – Roughness between preceding component (in the fronting direction) and the monolayer (Angstrom). If reverse_monolayer is False then this is the roughness between the preceding component and the heads, if reverse_monolayer is True then this is the roughness between the preceding component and the tails.

  • head_solvent (None, float, complex, refnx.reflect.SLD) – Solvent for the head region. If None, then solvation will be performed by the parent Structure, using the Structure.solvent attribute. Other options are coerced to an SLD object using SLD(float | complex). A float/complex argument is the SLD of the solvent (10**-6 Angstrom**-2).

  • tail_solvent (None, float, complex, refnx.reflect.SLD) – Solvent for the tail region. If None, then solvation will be performed by the parent Structure, using the Structure.solvent attribute. Other options are coerced to an SLD object using SLD(float | complex). A float/complex argument is the SLD of the solvent (10**-6 Angstrom**-2).

  • reverse_monolayer (bool, optional) – The default is to have heads closer to the fronting medium and tails closer to the backing medium. If reverse_monolayer is True then the tails will be closer to the fronting medium and heads closer to the backing medium.

  • name (str, optional) – The name for the component

Notes

The sum of coherent scattering lengths must be in Angstroms, the volume must be in cubic Angstroms. This is because the SLD of a tail group is calculated as b_tails / vm_tails * 1e6 to achieve the units 10**6 Angstrom**-2.

logp()[source]

The log-probability that this Component adds to the total log-prior term. Do not include log-probability terms for the actual parameters, these are automatically included elsewhere.

Returns

logp – Log-probability

Return type

float

property parameters

refnx.analysis.Parameters associated with this component

slabs(structure=None)[source]

Slab representation of monolayer, as an array

Parameters

structure (refnx.reflect.Structure) – The Structure hosting this Component

class refnx.reflect.MixedReflectModel(structures, scales=None, bkg=1e-07, name='', dq=5.0, threads=-1, quad_order=17)[source]

Bases: object

Calculates an incoherent average of reflectivities from a sequence of structures. Such a situation may occur if a sample is not uniform over its illuminated area.

Parameters
  • structures (sequence of refnx.reflect.Structure) – The interfacial structures to incoherently average

  • scales (None, sequence of float or refnx.analysis.Parameter, optional) – scale factors. The reflectivities calculated from each of the structures are multiplied by their respective scale factor during overall summation. These values are turned into Parameters during the construction of this object. You must supply a scale factor for each of the structures. If scales is None, then default scale factors are used: [1 / len(structures)] * len(structures). It is a good idea to set the lower bound of each scale factor to zero (not done by default).

  • bkg (float or refnx.analysis.Parameter, optional) – linear background added to the overall reflectivity. This is turned into a Parameter during the construction of this object.

  • name (str, optional) – Name of the mixed Model

  • dq (float or refnx.analysis.Parameter, optional) –

    • dq == 0 then no resolution smearing is employed.

    • dq is a float or refnx.analysis.Parameter

      a constant dQ/Q resolution smearing is employed. For 5% resolution smearing supply 5.

    However, if x_err is supplied to the model method, then that overrides any setting given here. This value is turned into a Parameter during the construction of this object.

  • threads (int, optional) – Specifies the number of threads for parallel calculation. This option is only applicable if you are using the _creflect module. The option is ignored if using the pure python calculator, _reflect. If threads == -1 then all available processors are used.

  • quad_order (int, optional) – the order of the Gaussian quadrature polynomial for doing the resolution smearing. default = 17. Don’t choose less than 13. If quad_order == ‘ultimate’ then adaptive quadrature is used. Adaptive quadrature will always work, but takes a _long_ time (2 or 3 orders of magnitude longer). Fixed quadrature will always take a lot less time. BUT it won’t necessarily work across all samples. For example, 13 points may be fine for a thin layer, but will be atrocious at describing a multilayer with bragg peaks.

__call__(x, p=None, x_err=None)[source]

Calculate the generative model

Parameters
  • x (float or np.ndarray) – q values for the calculation.

  • p (refnx.analysis.Parameters, optional) – parameters required to calculate the model

  • x_err (np.ndarray) – dq resolution smearing values for the dataset being considered.

Returns

reflectivity – Calculated reflectivity

Return type

np.ndarray

property bkg

refnx.analysis.Parameter - linear background added to all model values.

property dq

refnx.analysis.Parameter

  • dq.value == 0

    no resolution smearing is employed.

  • dq.value > 0

    a constant dQ/Q resolution smearing is employed. For 5% resolution smearing supply 5. However, if x_err is supplied to the model method, then that overrides any setting reported here.

logp()[source]

Additional log-probability terms for the reflectivity model. Do not include log-probability terms for model parameters, these are automatically calculated elsewhere.

Returns

logp – log-probability of structure.

Return type

float

model(x, p=None, x_err=None)[source]

Calculate the reflectivity of this model

Parameters
  • x (float or np.ndarray) – q values for the calculation.

  • p (refnx.analysis.Parameter, optional) – parameters required to calculate the model

  • x_err (np.ndarray) – dq resolution smearing values for the dataset being considered.

Returns

reflectivity

Return type

np.ndarray

property parameters

refnx.analysis.Parameters - parameters associated with this model.

property scales

refnx.analysis.Parameter - the reflectivity from each of the structures are multiplied by these values to account for patchiness.

property structures

list of refnx.reflect.Structure that describe the patchiness of the surface.

class refnx.reflect.Motofit[source]

Bases: object

An interactive slab modeller (Jupyter/ipywidgets based) for Neutron and X-ray reflectometry data.

The interactive modeller is designed to be used in a Jupyter notebook.

>>> # specify that plots are in a separate graph window
>>> %matplotlib qt
>>> # alternately if you want the graph to be embedded in the notebook use
>>> # %matplotlib notebook
>>> from refnx.reflect import Motofit
>>> # create an instance of the modeller
>>> app = Motofit()
>>> # display it in the notebook by calling the object with a datafile.
>>> app('dataset1.txt')
>>> # lets fit a different dataset
>>> app2 = Motofit()
>>> app2('dataset2.txt')

The Motofit instance has several useful attributes that can be used in other cells. For example, one can access the objective and curvefitter attributes for more advanced fitting functionality than is available in the GUI. A code attribute can be used to retrieve a Python code fragment that can be used as a basis for developing more complicated models, such as interparameter constraints, global fitting, etc.

dataset

The dataset associated with the modeller

Type

refnx.dataset.Data1D

model

Calculates a theoretical model, from an interfacial structure (model.Structure).

Type

refnx.reflect.ReflectModel

objective

The Objective that allows one to compare the model against the data.

Type

refnx.analysis.Objective

curvefitter

Object for fitting the data based on the objective.

Type

refnx.analysis.CurveFitter

fig

Graph displaying the data.

Type

matplotlib.Figure

code

A Python code fragment capable of fitting the data.

Type

str

__call__(data=None, model=None)[source]

Display the Motofit GUI in a Jupyter notebook cell.

Parameters
  • data (refnx.dataset.Data1D) – The dataset to associate with the Motofit instance.

  • model (refnx.reflect.ReflectModel or str or file-like) – A model to associate with the data. If model is a str or file-like then the load_model method will be used to try and load the model from file. This assumes that the file is a pickle of a ReflectModel

property code

Executable Python code fragment for the GUI model.

property curvefitter
do_fit(*args)[source]

Ask the Motofit object to perform a fit (differential evolution).

Parameters

change

Notes

After performing the fit the Jupyter display is updated.

load_data(data)[source]

Load a dataset into the Motofit instance.

Parameters

data (refnx.dataset.Data1D, or str, or file-like) –

load_model(*args, f=None)[source]

Load a serialised model. If f is not specified then an attempt will be made to find a model corresponding to the current dataset name, ‘model_’ + self.dataset.name + ‘.pkl’. If there is no current dataset then the most recent model will be loaded.

Parameters

f (file like or str, optional) – pickle file to load model from.

redraw(change)[source]

Redraw the Jupyter GUI associated with the Motofit instance.

save_model(*args, f=None)[source]

Serialise a model to a pickle file. If f is not specified then the file name is constructed from the current dataset name; if there is no current dataset then the filename is constructed from the current time. These constructed filenames will be in the current working directory, for a specific save location f must be provided.

Parameters

f (file like or str, optional) – File to save model to.

set_model(model)[source]

Change the refnx.reflect.ReflectModel associated with the Motofit instance.

Parameters

model (refnx.reflect.ReflectModel) –

update_model(change)[source]

Updates the plots when the parameters change

Parameters

change

class refnx.reflect.ReflectModel(structure, scale=1, bkg=1e-07, name='', dq=5.0, threads=-1, quad_order=17)[source]

Bases: object

Parameters
  • structure (refnx.reflect.Structure) – The interfacial structure.

  • scale (float or refnx.analysis.Parameter, optional) – scale factor. All model values are multiplied by this value before the background is added. This is turned into a Parameter during the construction of this object.

  • bkg (float or refnx.analysis.Parameter, optional) – Q-independent constant background added to all model values. This is turned into a Parameter during the construction of this object.

  • name (str, optional) – Name of the Model

  • dq (float or refnx.analysis.Parameter, optional) –

    • dq == 0 then no resolution smearing is employed.

    • dq is a float or refnx.analysis.Parameter

      a constant dQ/Q resolution smearing is employed. For 5% resolution smearing supply 5.

    However, if x_err is supplied to the model method, then that overrides any setting given here. This value is turned into a Parameter during the construction of this object.

  • threads (int, optional) – Specifies the number of threads for parallel calculation. This option is only applicable if you are using the _creflect module. The option is ignored if using the pure python calculator, _reflect. If threads == -1 then all available processors are used.

  • quad_order (int, optional) – the order of the Gaussian quadrature polynomial for doing the resolution smearing. default = 17. Don’t choose less than 13. If quad_order == ‘ultimate’ then adaptive quadrature is used. Adaptive quadrature will always work, but takes a _long_ time (2 or 3 orders of magnitude longer). Fixed quadrature will always take a lot less time. BUT it won’t necessarily work across all samples. For example, 13 points may be fine for a thin layer, but will be atrocious at describing a multilayer with bragg peaks.

__call__(x, p=None, x_err=None)[source]

Calculate the generative model

Parameters
  • x (float or np.ndarray) – q values for the calculation.

  • p (refnx.analysis.Parameters, optional) – parameters required to calculate the model

  • x_err (np.ndarray) – dq resolution smearing values for the dataset being considered.

Returns

reflectivity – Calculated reflectivity

Return type

np.ndarray

property bkg

refnx.analysis.Parameter - linear background added to all model values.

property dq

refnx.analysis.Parameter

  • dq.value == 0

    no resolution smearing is employed.

  • dq.value > 0

    a constant dQ/Q resolution smearing is employed. For 5% resolution smearing supply 5. However, if x_err is supplied to the model method, then that overrides any setting reported here.

logp()[source]

Additional log-probability terms for the reflectivity model. Do not include log-probability terms for model parameters, these are automatically included elsewhere.

Returns

logp – log-probability of structure.

Return type

float

model(x, p=None, x_err=None)[source]

Calculate the reflectivity of this model

Parameters
  • x (float or np.ndarray) – q values for the calculation.

  • p (refnx.analysis.Parameters, optional) – parameters required to calculate the model

  • x_err (np.ndarray) – dq resolution smearing values for the dataset being considered.

Returns

reflectivity – Calculated reflectivity

Return type

np.ndarray

property parameters

refnx.analysis.Parameters - parameters associated with this model.

property scale

refnx.analysis.Parameter - all model values are multiplied by this value before the background is added.

property structure

refnx.reflect.Structure - object describing the interface of a reflectometry sample.

class refnx.reflect.SLD(value, name='')[source]

Bases: object

Object representing freely varying SLD of a material

Parameters

Notes

An SLD object can be used to create a Slab:

>>> # an SLD object representing Silicon Dioxide
>>> sio2 = SLD(3.47, name='SiO2')
>>> # create a Slab of SiO2 20 A in thickness, with a 3 A roughness
>>> sio2_layer = sio2(20, 3)

The SLD object can also be made from a complex number, or from Parameters

>>> sio2 = SLD(3.47+0.01j)
>>> re = Parameter(3.47)
>>> im = Parameter(0.01)
>>> sio2 = SLD(re)
>>> sio2 = SLD([re, im])
__call__(thick=0, rough=0)[source]

Create a Slab.

Parameters
Returns

slab – The newly made Slab.

Return type

refnx.reflect.Slab

Example

>>> # an SLD object representing Silicon Dioxide
>>> sio2 = SLD(3.47, name='SiO2')
>>> # create a Slab of SiO2 20 A in thickness, with a 3 A roughness
>>> sio2_layer = sio2(20, 3)
__complex__()[source]
__or__(other)[source]
__str__()[source]

Return str(self).

property parameters

refnx.analysis.Parameters associated with this component

class refnx.reflect.Slab(thick, sld, rough, name='', vfsolv=0)[source]

Bases: refnx.reflect.structure.Component

A slab component has uniform SLD over its thickness.

Parameters
__str__()[source]

Return str(self).

property parameters

refnx.analysis.Parameters associated with this component

slabs(structure=None)[source]

Slab representation of this component. See Component.slabs

class refnx.reflect.Spline(extent, vs, dz, name='', interpolator=<class 'scipy.interpolate._cubic.PchipInterpolator'>, zgrad=True, microslab_max_thickness=1)[source]

Bases: refnx.reflect.structure.Component

Freeform modelling of the real part of an SLD profile using spline interpolation.

Parameters
  • extent (float or Parameter) – Total extent of spline region

  • vs (Sequence of float/Parameter) – the real part of the SLD values of each of the knots.

  • dz (Sequence of float/Parameter) – the lateral offset between successive knots.

  • name (str) – Name of component

  • interpolator (scipy.interpolate Univariate Interpolator, optional) – Which scipy.interpolate Univariate Interpolator to use.

  • zgrad (bool, optional) – If true then extra control knots are placed outside this spline with the same SLD as the materials on the left and right. With a monotonic interpolator this guarantees that the gradient is zero at either end of the interval.

  • microslab_max_thickness (float) – Maximum size of the microslabs approximating the spline.

Notes

This spline component only generates the real part of the SLD (thereby assuming that the imaginary part is negligible). The sequence dz are the lateral offsets of the knots normalised to a unit interval [0, 1]. The reason for using lateral offsets is so that the knots are monotonically increasing in location. When each dz offset is turned into a Parameter it is given bounds in [0, 1]. Thus with an extent of 500, and dz = [0.1, 0.2, 0.2], the knots will be at [0, 50, 150, 250, 500]. Notice that there are two extra knots for the start and end of the interval (disregarding the zgrad control knots). If np.sum(dz) > 1, then the knot spacings are normalised to 1. e.g. dz of [0.1, 0.2, 0.9] would result in knots (in the normalised interval) of [0, 0.0833, 0.25, 1, 1]. If vs is monotonic then the output spline will be monotonic. If vs is not monotonic then there may be regions of the spline larger or smaller than left or right. The slab representation of this component are approximated using a ‘microslab’ representation of spline. The max thickness of each microslab is microslab_max_thickness.

A Spline component should not be used more than once in a given Structure.

__call__(z, structure)[source]

Calculates the spline value at z

Parameters
Returns

sld – Real part of SLD

Return type

float

logp()[source]

The log-probability that this Component adds to the total log-prior term. Do not include log-probability terms for the actual parameters, these are automatically included elsewhere.

Returns

logp – Log-probability

Return type

float

property parameters

refnx.analysis.Parameters associated with this component

slabs(structure=None)[source]

Slab representation of the spline, as an array

Parameters

structure (refnx.reflect.Structure) – The Structure hosting this Component

class refnx.reflect.Stack(components=(), name='', repeats=1)[source]

Bases: collections.UserList, refnx.reflect.structure.Component

A series of Components to be considered as one. When part of a Structure the Stack can represent a multilayer by setting the repeats attribute.

Parameters
  • components (sequence) – A series of Components to initialise the stack with

  • name (str) – Name of the Stack

  • repeats (number, Parameter) – When viewed from a parent Structure the Components in this Stack will appear to be repeated repeats times. Internally repeats is rounded to the nearest integer before use, allowing it to be used as a fitting parameter.

Notes

To add Components to the Stack you can:

  • initialise the object with a list of Components

  • utilise list methods (extend, append, insert, etc)

  • Add by __ior__ (e.g. stack |= component)

You can’t use __or__ to add Components to a stack (e.g. Stack() | component) OR’ing a Stack with other Components will make a Structure.

__ior__(other)[source]

Build a Stack by IOR’ing.

Parameters

other (Component, SLD) – The object to add to the structure.

__setitem__(i, v)[source]
__str__()[source]

Return str(self).

append(item)[source]

Append a Component to the Stack.

Parameters

item (refnx.reflect.Component) – The component to be added.

property components

The list of components in the sample.

property parameters

refnx.analysis.Parameters, all the parameters associated with this structure.

slabs(structure=None)[source]

Slab representation of this component. See Component.slabs

Notes

The overall set of slabs returned by this method consists of the concatenated constituent Component slabs repeated Stack.repeats times.

class refnx.reflect.Structure(components=(), name='', solvent=None, reverse_structure=False, contract=0)[source]

Bases: collections.UserList

Represents the interfacial Structure of a reflectometry sample. Successive Components are added to the Structure to construct the interface.

Parameters
  • components (sequence) – A sequence of Components to initialise the Structure.

  • name (str) – Name of this structure

  • solvent (refnx.reflect.SLD) – Specifies the scattering length density used for solvation. If no solvent is specified then the SLD of the solvent is assumed to be the SLD of Structure[-1].slabs()[-1] (after any possible slab order reversal).

  • reverse_structure (bool) – If Structure.reverse_structure is True then the slab representation produced by Structure.slabs is reversed. The sld profile and calculated reflectivity will correspond to this reversed structure.

  • contract (float) – If contract > 0 then an attempt to contract/shrink the slab representation is made. Use larger values for coarser profiles (and vice versa). A typical starting value to try might be 1.0.

Notes

If Structure.reverse_structure is True then the slab representation order is reversed. If no solvent is specified then the volume fraction of solvent in each of the Components is assumed to have the scattering length density of Structure[-1].slabs()[-1] after any possible slab order reversal. This slab corresponds to the scattering length density of the semi-infinite backing medium. The profile contraction specified by the contract keyword can improve calculation time for Structures created with microslicing (such as analytical profiles). If you use this option it is recommended to check the reflectivity signal with and without contraction to ensure they are comparable.

Example

>>> from refnx.reflect import SLD
>>> # make the materials
>>> air = SLD(0, 0)
>>> # overall SLD of polymer is (1.0 + 0.001j) x 10**-6 A**-2
>>> polymer = SLD(1.0 + 0.0001j)
>>> si = SLD(2.07)
>>> # Make the structure, s, from slabs.
>>> # The polymer slab has a thickness of 200 A and a air/polymer roughness
>>> # of 4 A.
>>> s = air(0, 0) | polymer(200, 4) | si(0, 3)
__ior__(other)[source]

Build a structure by IOR’ing Structures/Components/SLDs.

Parameters

other (Structure, Component, SLD) – The object to add to the structure.

Examples

>>> air = SLD(0, name='air')
>>> sio2 = SLD(3.47, name='SiO2')
>>> si = SLD(2.07, name='Si')
>>> structure = air | sio2(20, 3)
>>> structure |= si(0, 4)
__or__(other)[source]

Build a structure by OR’ing Structures/Components/SLDs.

Parameters

other (Structure, Component, SLD) – The object to add to the structure.

Examples

>>> air = SLD(0, name='air')
>>> sio2 = SLD(3.47, name='SiO2')
>>> si = SLD(2.07, name='Si')
>>> structure = Structure()
>>> structure = air | sio2(20, 3) | si(0, 3)
__setitem__(i, v)[source]
__str__()[source]

Return str(self).

append(item)[source]

Append a Component to the Structure.

Parameters

item (refnx.reflect.Component) – The component to be added.

property components

The list of components in the sample.

contract = None

float if contract > 0 then an attempt to contract/shrink the slab representation is made. Use larger values for coarser profiles (and vice versa). A typical starting value to try might be 1.0.

logp()[source]

log-probability for the interfacial structure. Note that if a given component is present more than once in a Structure then it’s log-prob will be counted twice.

Returns

logp – log-prior for the Structure.

Return type

float

property name
static overall_sld(slabs, solvent)[source]

Performs a volume fraction weighted average of the material SLD in a layer and the solvent in a layer.

Parameters
  • slabs (np.ndarray) – Slab representation of the layers to be averaged.

  • solvent (complex or reflect.SLD) – SLD of solvating material.

Returns

averaged_slabs – the averaged slabs.

Return type

np.ndarray

property parameters

refnx.analysis.Parameters, all the parameters associated with this structure.

plot(pvals=None, samples=0, fig=None)[source]

Plot the structure.

Requires matplotlib be installed.

Parameters
  • pvals (np.ndarray, optional) – Numeric values for the Parameter’s that are varying

  • samples (number) – If this structures constituent parameters have been sampled, how many samples you wish to plot on the graph.

  • fig (Figure instance, optional) – If fig is not supplied then a new figure is created. Otherwise the graph is created on the current axes on the supplied figure.

Returns

fig, axmatplotlib figure and axes objects.

Return type

matplotlib.Figure, matplotlib.Axes

reflectivity(q, threads=0)[source]

Calculate theoretical reflectivity of this structure

Parameters
  • q (array-like) – Q values (Angstrom**-1) for evaluation

  • threads (int, optional) – Specifies the number of threads for parallel calculation. This option is only applicable if you are using the _creflect module. The option is ignored if using the pure python calculator, _reflect. If threads == 0 then all available processors are used.

property reverse_structure

bool if True then the slab representation produced by Structure.slabs is reversed. The sld profile and calculated reflectivity will correspond to this reversed structure.

slabs(**kwds)[source]
Returns

slabs – Slab representation of this structure. Has shape (N, 5).

  • slab[N, 0]

    thickness of layer N

  • slab[N, 1]

    overall SLD.real of layer N (material AND solvent)

  • slab[N, 2]

    overall SLD.imag of layer N (material AND solvent)

  • slab[N, 3]

    roughness between layer N and N-1

  • slab[N, 4]

    volume fraction of solvent in layer N.

Return type

np.ndarray

Notes

If Structure.reversed is True then the slab representation order is reversed. The slab order is reversed before the solvation calculation is done. I.e. if Structure.solvent == ‘backing’ and Structure.reversed is True then the material that solvates the system is the component in Structure[0], which corresponds to Structure.slab[-1].

sld_profile(z=None)[source]

Calculates an SLD profile, as a function of distance through the interface.

Parameters

z (float) – Interfacial distance (Angstrom) measured from interface between the fronting medium and the first layer.

Returns

sld – Scattering length density / 1e-6 Angstrom**-2

Return type

float

Notes

This can be called in vectorised fashion.

property solvent
refnx.reflect.gui()[source]
refnx.reflect.main()[source]
refnx.reflect.reflectivity(q, slabs, scale=1.0, bkg=0.0, dq=5.0, quad_order=17, threads=-1)[source]

Abeles matrix formalism for calculating reflectivity from a stratified medium.

Parameters
  • q (np.ndarray) – The qvalues required for the calculation. \(Q=\frac{4Pi}{\lambda}\sin(\Omega)\). Units = Angstrom**-1

  • slabs (np.ndarray) –

    coefficients required for the calculation, has shape (2 + N, 4), where N is the number of layers

    • slabs[0, 0]

      ignored

    • slabs[N, 0]

      thickness of layer N

    • slabs[N+1, 0]

      ignored

    • slabs[0, 1]

      SLD_real of fronting (/1e-6 Angstrom**-2)

    • slabs[N, 1]

      SLD_real of layer N (/1e-6 Angstrom**-2)

    • slabs[-1, 1]

      SLD_real of backing (/1e-6 Angstrom**-2)

    • slabs[0, 2]

      SLD_imag of fronting (/1e-6 Angstrom**-2)

    • slabs[N, 2]

      iSLD_imag of layer N (/1e-6 Angstrom**-2)

    • slabs[-1, 2]

      iSLD_imag of backing (/1e-6 Angstrom**-2)

    • slabs[0, 3]

      ignored

    • slabs[N, 3]

      roughness between layer N-1/N

    • slabs[-1, 3]

      roughness between backing and layer N

  • scale (float) – scale factor. All model values are multiplied by this value before the background is added

  • bkg (float) – Q-independent constant background added to all model values.

  • dq (float or np.ndarray, optional) –

    • dq == 0

      no resolution smearing is employed.

    • dq is a float

      a constant dQ/Q resolution smearing is employed. For 5% resolution smearing supply 5.

    • dq is the same shape as q

      the array contains the FWHM of a Gaussian approximated resolution kernel. Point by point resolution smearing is employed. Use this option if dQ/Q varies across your dataset.

    • dq.ndim == q.ndim + 2 and q.shape == dq[…, -3].shape

      an individual resolution kernel is applied to each measurement point. This resolution kernel is a probability distribution function (PDF). dqvals will have the shape (qvals.shape, 2, M). There are M points in the kernel. dq[:, 0, :] holds the q values for the kernel, dq[:, 1, :] gives the corresponding probability.

  • quad_order (int, optional) – the order of the Gaussian quadrature polynomial for doing the resolution smearing. default = 17. Don’t choose less than 13. If quad_order == ‘ultimate’ then adaptive quadrature is used. Adaptive quadrature will always work, but takes a _long_ time (2 or 3 orders of magnitude longer). Fixed quadrature will always take a lot less time. BUT it won’t necessarily work across all samples. For example, 13 points may be fine for a thin layer, but will be atrocious at describing a multilayer with bragg peaks.

  • threads (int, optional) – Specifies the number of threads for parallel calculation. This option is only applicable if you are using the _creflect module. The option is ignored if using the pure python calculator, _reflect. If threads == -1 then all available processors are used.

Example

>>> from refnx.reflect import reflectivity
>>> q = np.linspace(0.01, 0.5, 1000)
>>> slabs = np.array([[0, 2.07, 0, 0],
...                   [100, 3.47, 0, 3],
...                   [500, -0.5, 0.00001, 3],
...                   [0, 6.36, 0, 3]])
>>> print(reflectivity(q, slabs))
refnx.reflect.sld_profile(slabs, z=None)[source]

Calculates an SLD profile, as a function of distance through the interface.

Parameters

z (float) – Interfacial distance (Angstrom) measured from interface between the fronting medium and the first layer.

Returns

sld – Scattering length density / 1e-6 Angstrom**-2

Return type

float

Notes

This can be called in vectorised fashion.

refnx.reflect.test = <refnx._lib._testutils.PytestTester object>